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The distortion by a linear flow of the electric double layer around a small particle is 
studied for the case of a charge cloud which is thick in comparison with the particle 
radius and for arbitrary flow strengths, including those which are strong enough to 
‘produce a significant distortion of the cloud. For weak flows a second-order-fluid 
approximation is obtained for the stress contribution for a dilute suspension of such 
particles. For arbitrarily strong flows integral representations of the charge density 
and numerical calculations of the stress contribution are given for three representative 
flows: simple shear, axisymmetric strain and two-dimensional straining motion. 

1. Introduction 
When a small charged particle is in suspension in an electrolyte it attracts ions of 

opposite charge and repels ions of like charge, so the particle is surrounded by a charge 
cloud whose total charge is equal in magnitude and opposite in sign to its own. This 
charge cloud together with the surface charge is referred to as the electric double 
layer. A suspension of charged particles whose charge cloud is of comparable size to 
the particle has noticeably different dynamics to a similar suspension of uncharged 
particles. Conway & Dobry-Duclaux (1960) describe three ways in which the dyna- 
mics are affected, the three electroviscous effects. The first or primary effect arises 
from the deformation by the flow of the diffuse ion cloud around a single particle, 
and this leads to a modification of the Einstein term in the viscosity expansion. The 
second effect arises from particle interactions and has recently been studied theoretic- 
ally by Russel (1976, 1978a). The third or tertiary effect arises from the change in 
shape of a charged macromolecule in solution. 

After a number of earlier theories, Booth (1950) presented a complete analysis of 
the primary effect for spherical particles with an arbitrarily thick charge cloud in the 
limits of weak flow and weak electrical effects, and found the correction to the New- 
tonian viscosity. Russel (1978b) has considered the case of a thin double layer and 
arbitrary flow strength. One of the simplifying features of both these theories is that 
the deformation of the cloud from its equilibrium shape is small. In  this paper the 
problem of an arbitrary flow strength and thick double layer is considered, as a case 
when there is a large deformation of the charge cloud and when the electrical contri- 
bution to the bulk stress can be comparable with the Einstein $c term. 
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In the following sections we first review Russel’s formulation of the equations for 
the ion cloud and specialize them to the case of a thick cloud, where we find it con- 
venient to work in Fourier space. For general weak flows the bulk stress is approxi- 
mated by a second-order-fluid law. For stronger flows the analysis is restricted to 
three specific flows: simple shear, axisymmetric strain and two-dimensional straining 
motion. In these cases an integral representation for the charge density and numerical 
calculations of the stress components are presented. The ideas are developed for a 
spherical particle, however it is found that the shape is not important, and that the 
theory holds for particles of arbitrary shape. 

2. Basic equations 
First the relevant results from Russel (1978b) for the model of the charge cloud 

around a spherical particle are recalled. The ions of species k ,  with valence zk ,  number 
density nk and velocity vk, satisfy the conservation equation 

ank/at + V .  ( n k v k )  = 0 (no sum). ( 1 )  

The ions move relative to the local fluid velocity u under the action of electrostatic 
and thermal forces. The different ion species are assumed to have the same mobility 
0, so 

vk - u = w( - ezkV@ - kTV In nk), 

where - kTV In nk represents Brownian diffusion and @ is the electrostatic potential. 
The local fluid properties, such as the dielectric constant e and viscosity po,  are taken 
to be constant throughout the charge cloud, so 

V2$ = -p/E, (3) 

where p = C enkzk is the local charge density. As the particles under consideration are 
small the fluid velocity satisfies the Stokes equations modified by the addition of the 
electrostatic body force pV$: 

p o v 2 u  = V p + p V @ ,  v.u = 0. (4) 

The boundary conditions on the particle surface are complicated by the presence 
of the Stern layer of adsorbed ions, described by Dukhin (1974). However, at the low 
ionic strengths which are relevant in this analysis, there will be few adsorbed ions, 
so the no-slip boundary condition on u and the electrical boundary conditions will be 
applied at the same surface r = a. The appropriate electrical boundary conditions are 
that there should be no flux of ions normal to the surface, n. v k  = 0, and that the 
surface charge is the same as when there is no fluid motion. When the surface 
potential, the zeta potential [, is small, i.e. 

Q0 = eS;/kT < 1, 

these boundary conditions can be combined to give 

a(p -po) /ar  = 0 at r = a, ( 5 )  

where po is the equilibrium charge density. 

can be summed, to give in the steady state 
Russel (19783) showed that for small surface potentiale, the ionic equation (2) 

(6) u . V p  = wkT(Vzp - 
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where K-1, the Debye length representing the thickness of the charge cloud, is defined 

e2 
&kT 

by 
K Z = - ~  k k z ,  no@ ) 

nt being the equilibrium number density a t  infinity. Thus, for example, an aqueous 
solution of a salt consisting of two monovalent ion species has K - ~  = 3- 1 x C-4 x 10-lo m, 
where Cis the molar concentration. Without the added salt the thickness of the double 
layer is m. 

Wiersma, Loeb & Overbeek (1966) analysed electrophoresis (i.e. the motion of a 
charged colloidal particle under an applied electric field) for (Do up to 6 and for arbitrary 
UK. They found that the linear theory for Qo < 1 was a good approximation up to 
Q0 N 2, which corresponds to 5 = 50 mV, with an error in the electrophoretic mobility 
of no more than 10 yo. For small a K  they found that the linear theory was valid for 
even larger Qo, and we expect a similar result in this analysis. 

In this paper we shall restrict the analysis to charge clouds that are thick in corn- 
parison with the particle radius, i.e. a K  < 1. Thus there will be two length scales in 
the problem, a and K - ~ ,  and a full solution for p would consist of matched asymptotic 
expansions on these inner and outer scales. We shall be particularly interested in the 
outer problem where the charge cloud appears to be around a point particle. It is 
appropriate to work in terms of non-dimensional equations, taking the length scale 
as K-1 and a typical charge to be Q, the charge on the particle. For aK 4 1 

Q = 4na5e. (7) 

We shall be concerned with linear flows; if the velocity gradient far from the particle 
is I', i.e. u N r.x as r -+ co, with typical value I', then the appropriate velocity scale 
is r / K .  Equations (2) and (6) hold only for r > a;  to make them valid over the whole 
domain a point charge a t  the origin is introduced, represented by 6(x). Denoting the 
non-dimensional variables by a prime, (3), (4) and (6) become 

V'2$' = -p ' -6(x ' ) ,  ( 8 4  

( 8 b )  

(8 c) 

V'Z,' - p' = yu' . V'p' + 6(x'), 

Vr2u' = V'p' + Hap'V' $' , 

where the Hartmann number Ha and the ion PBclet number y are given by 

r y=- Q 2 ~ 4  Ha=-= lLor 16n2ep0r K 2 W k T .  

y represents the strength of the convective forces on the ions compared with the 
Brownian forces and Ha represents the strength of the electrostatic body force 
compared with the viscous term in the Stokes equation, and can be thought of as a 
rigidity of the charge cloud. For weak flows the appropriate Hartmann number is 
not Ha but Hay, as then there is only a small change in p, and the equilibrium value 
ofpV$ is balanced by an isotropic pressure. Russel found that the Hartmann number 
for thin double layers is H a y / ( a ~ ) ~ .  In  this paper Ha is the relevant parameter and 
is assumed small. A summary of the dimensionless groups and the restrictions placed 
on them in this and previous analyses is given in table 1.  



42 4 D .  A .  Lever 

This 
Booth (1950) Russel (1978b) analysis 

a0 Dimensionless < 1  < 1  

Y Ion PBclet number < 1  Simple shear : arbitrary < (aK) -P  

Ha Hartmann number < 1  < l  < 1  
a K  Cloud thickness Arbitrary 9 1  < 1  

surface potential 

Pure strain : -g CZK 

TABLE 1.  The restrictions on the dimensionless groups in analyses of the 
primary electroviscous effect. 

A typical value of Ha for y 5 O(1) is ( D ~ ( u K ) ~ ,  thus Ha will be small for small UK.  

For an aqueous solution of NaCl at room temperature okT - m2 s-l, so y will 
not be small only for a combination of thick double layers and strong flows (r 2 lo3 s-l). 
Chan & Goring (1966) performed experiments to look for a dependence of the shear 
viscosity on the flow strength, however their experimental values of y were less than 1. 

As both Ha and UK are small, the perturbation to the flow due to both the presence 
of the particle and the electric forces will be small. So we may take uf = r’ . x‘ as a 
solution of (8c), and substitute it into the p’ equation ( 8 b ) .  The set of equations (8) 
is then uncoupled. 

After solving ( 8 b )  for the charge density, the contribution from the charge cloud 
to the bulk stress Z of a suspension of such particles will be of particular interest. 
The volume-averaging method of Batchelor (1970) for evaluating the bulk stress was 
adapted by Russel (1978b) to the case when both viscous and Maxwell stresses are 
present. He showed that the bulk stress can be written as 

Z = -p l+2 ,~ ,E+Zp,  

where Z p  is the particle contribution. In  the case of a dilute suspension with particle 
concentration c,  the O(c) term in the expansion of Z p  is 

Here dilute means not only that c < I but also that the charge clouds should not over- 
lap, i.e. c / ( u K ) ~  << 1.  This expression can be written in terms of non-dimensional 
variables to give 

I n  the absence of electrical effects the first term gives the Bc,u,,E Einstein term. I n  
the UK < 1 limit this integral is over a point particle, so we expect the contribution 
from the electric forces to be small in comparison with their contribution to the second 
integral. This assumption will be checked aposteriori a t  the end of $4.  Thus the electro- 
viscous contribution to C p  can be written as 

where Zef = lx’p’V‘$’dV’ 
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and the integral is now over all space. Even with Ha < 1 this can be comparable 
with the Einstein term, as H a / ( a ~ ) ~  can be O(1). 

So far the theory has been developed for spherical particles. It can now be seen 
that, as we are dealing with the outer problem on the scale K - ~ ,  the shape of the particle 
is not important, provided that K - ~  is much greater than the largest linear dimension 
of the particle. The solution of (8 6 )  for p and the corresponding value of Z e  from (10) 
depend only on K - ~ ,  Q and n, the number density of particles (n  = 3c/47ra3), and not 
on a. For non-spherical particbs equation (7) relating Q and 6 will no longer be valid, 
and it should be replaced by the appropriate relationship. 

Equation ( 8 b )  for p’ is similar to a diffusion equation for a point source of heat in 
a linear flow, with the addition of the electrostatic force term, and it can be solved 
by a number of methods. However in general it will not be easy to write down the 
corresponding solution of the Poisson equation for @‘, so evaluation of 2”’ will be 
difficult. To get over these problems the most appropriate method appears to be to 
take a three-dimensional Fourier transform of (8a ,  b ) ,  giving 

where p^(k) is the Fourier transform of p’(x’ ) ,  K = (k]  and $ = a/ak. This is solved 
subject to p^(k)-+O as k-tco. The expression for the stress contribution (10) is a 
convolution and can be written as 

and the condition that the total charge in the charge cloud is - 1 becomes P(0) = - 1. 
and Ze’ in real space occur only as non-dimen- 

sional variables so for convenience the prime will be dropped. 
Henceforth the quantities x’, p’, 

3. Second-order-fluid approximation 

down : 
When the ion P6clet number y is small, a power-series solution of ( 1  1 )  can be written 

where 

n=O 

Here Po corresponds to the well-known equilibrium double layer solution - e-r/47rr, 
withr = 1x1. 

It is convenient to write the deviatoric-stress contribution (12) as 

k6p^ ) k.I’.$$d3k. 
Y 2kk 

( l + K 2 ) 3 + ( l + K 2 ) K 2  

Equation (14) can be used to provide successive approximations to Ze. The first is 
found by substituting Po; the k integral is then a symmetric isotropic tensor of rank 4 ,  
which can be evaluated to give a correction to the Newtonian viscosity 

,LA$ = 1 / 2 4 0 ~ ,  

which agrees with the a~ < 1 limit of the analysis of Booth (1950). 
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The second approximation to the constitutive relationship must be of the form of 
a second-order-fluid, namely 

Ce = 2&yE - 2ay2SE/6t +/3y2E. E ,  (15) 

where G E / S t  is the Oldroyd derivative 

DE/Dt -r. E- E IT. 
In  this case the constants a and /3 are found from (14 )  to be 

a = 1/640n, ,8 = - 11224~. ( 1 6 )  

These will be used to give the weak-flow limits of the stress components which vanish 
for a Newtonian fluid, such as the normal-stress differences in a simple shear flow. 

4. Simple shear 
In the previous section we restricted the analysis to y < 1. We now look for solutions 

for arbitrary values of y .  In  principle we could look for a solution of (1  1) for a general 
flow, however the value of any results will be lost in the complexity of the algebra. 
So we restrict the analysis to two specific flows, first simple shear and then in 0 5 pure 
straining motion. For simple shear 

r=(g H &) 
and then (1  1) reduces to the ordinary differential equation 

ykap^/aZ- (1 +K2)ph = 1 

with k = ( k ,  I ,  m) and t,he boundary condition p^(k) -+ 0 as k -+ co. The solution is 

This is basically a product of three Gaussians in k ,  1 + iyvk and m, so it can be in- 
verted to give 

This integral is plotted in figure 1 for three different values of y ,  namely 0-5,2.0 and 
10.0. It can be seen that the distortion of the charge cloud from the spherically sym- 
metric equilibrium solution po increases with increasing flow strength. The distortion 
can be understood in terms of the associated quadrupole moment of the charge dis- 
tribution 

8 ). ("0" 6 y  0 -4y2 

A A  h 

Q = (-3VVp^+V2p^l),,o = - 6 y  -4y2  

For weak shear this is a tesseral quadrupole of strength - 6y ,  arising from the per- 
turbed charge distribution 

(19) p = - (1 + i y z y  + O(y2r4)) e+/4nr. 
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7 
8 12 16 

t -4 
FIGURE 1. Contours of constant p in the plane z = 0 for simple shear flow. ( a )  y = 0.5, (a) 

y = 2.0, ( c )  y = 10.0. The values of p are -0.0128, -0.0032, -0.0008 and -0.0002. 

However for stronger flows (y  @ 1 )  this changes to an axial quadrupole of strength 
- 8y2, corresponding to a long downstream wake in which there is a balance between 
diffusion in the y and z directions, the electrostatic body force and the strong convective 
drag on the ions. From the integral (18) it can be seen that for strong flows y and z 
scale on O(1) whereas x scales on O(y). 

As was commented in 5 2, (18) is a solution of the outer problem and it has been ob- 
tained without satisfying the inner boundary condition that there should be no flux 
of ions at the surface ( 5 ) .  However, from (19) at r = aK 

= ( 1  + O ( ( a d 2 y ) )  aPo/ar, 

which shows that the inner correction is not important. 
In the case of simple shear there are three independent contributions to the devia- 

toric bulk stress. These are the shear stress Eelz and the two normal-stress differences 
I&-Eg3 and X&-Eg3. The shear stress is obtained by substituting (17) and the 
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corresponding form of 4 from (1 1) into (12).  Using spherical polars ( K ,  8, #), this can 
be simplified by performing the K integration to give 

where 

g(e, +, u, w') = e-u-v'[u + w' + y cos 8 sin 8 cos +(v2 + w f 2 )  + + cos2 8y2(w3 + w'3)]-4. 

This is computed numerically; the 8 and # integrations offer no problems and can be 
evaluated to within 1% by 8-point Gaussian quadrature. The w and v f  integrals have 
an O(v-4) singularity as w -+ 0 which can be subtracted out in the form of the integrand 
when y = 0. These integrals can then be evaluated by 12-point Laguerre quadrature 
as they decay exponentially as v +- 00. However for y 2 10 this scheme is not appro- 
priate as the algebraic decay of g in w and v' becomes more important than the expo- 
nential decay. A substitution w2 = cos Byw, u = l / ( w  + l),  wt2 = cos 8yv' and 

u' = l /(w'+ 1) 

is then made, and a 16-point Gaussian quadrature on (0 , l )  can be used for u and u'. 
The high shear form of 2f2 can also be seen from the transformed form; the g(8, +, v ,  0) 
term contributes an O(y-4) term and the g(8,+, v, v') term an O(y-3) term. Thus 

X f 2 -  A / y *  as y+00 
with 

The neglect of the second term in (20) is equivalent to writing $ = 1/K2, or 
$ = 1/4nr. Thus the dominant contribution comes from the interaction of the charge 
cloud with the electric field due only to the charged particle, the stretched diffuse 
cloud producing a negligible field. In addition, for strong flows the major contribution 
comes from K = O(y*), which corresponds to r = O(y-&), this being the length scale 
on which diffusion balances convection in ( 8 b ) .  This scaling has been found for all 
stress components in the y 1 limit of all the linear flows considered. As the con- 
tribution comes from r = O(y-)) the condition UK < 1 should be strengthened to 
aK .g y-4 for y 1. X& is plotted in figure 2 and it can be seen that the strong shear 
region is not reached until y - 50. 

The normal-stress differences are also plotted in figure 2. For weak shear the form 
can be found from ( 1  5) and (1  6) to give 

whilst for y 9 1 

Thus for strong flows the first normal-stress difference is the largest of the stress 
components by a factor of 9. From t'he plots it can also be seen that the normal stresses 
converge more slowly to the asymptotic value than the shear stress: this is because 
the error is O(y-l) rather than O(y-3). 

The magnitude of the stresslet term in (9), which was neglected for CZK .g 1, can 

Xil - Xg3 N 0-180y-4, X& - 2g3 N - 0.025~-4. 
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FIGURE 2. Logarthmic plot of the stress components in simple shear as a function of ion PBclet 

number. (i) Xf2, (ii) Z;l - Z&, (iii) - (Xi2-  Z&). --- - , y < 1 limit; ---.-, y 1 limit. 

now be estimated. First, from the inner length scale there is a contribution from the 
velocity perturbation due to the presence of the particle: this gives the QC Einstein 
term. The outer contribution, due to the electrostatic body force, can be found by 
examining the behaviour of p near the origin, which is the same as ( 1  9). The equilibrium 
part gives only an isotropic pressure so the leading term arises from the perturbation 
to pV$, which is O(r--l). This leads to a stress at  r = UK which is O(Ha lna~) ,  thus 
the stresslet term is o ( H a ( a ~ ) ~  In a ~ ) .  Logarithmic terms arise in Booth's analysis at 
the same order. 

5. Pure straining motion 
The second particular flow we consider for arbitrary values of y is the case of a 

particle in a pure straining motion. Taking axes along the principal axes of strain, 
the imposed velocity can be written as u = (E,x ,  E ,y ,  E3z)  with E , + E , + E ,  = 0. 
Then ( 1 1 )  takes the form 

This can be integrated by the method of characteristics to give 

This is a product of three Gaussians and can be inverted to give an integral represen- 
tation of the charge density: 
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7 
FIGURE 3. Strain viscosity pe for axisynimetric straining motion as a function of y. 
--_- , quadratic approximation from (22) for JyI @ 1 limit; -.-.-, JyJ & 1 limit. 

The asymptotic form of p for large x can be found. For simplicity we take the case 
of uniaxial extensional flow, i.e. El = 2 and E, = E, = - 1. Working in cylindrical 
polars (x, s, #), the principal contribution to the integral (21) for large z comes from 
the neighbourhood of h = 0, giving 

where I’ is the gamma function. Thus there is an algebraic decay in p in the direction 
of extension, instead of the exponential decay in the equilibrium double layer and 
the simple-shear case. This is because the ions experience an accelerating flow as they 
are swept downstream. For strong flows (y % l ) ,  this algebraic decay is very weak 
and the charge is found on length scales x = O(e7) and s = O(y-4). 

The bulk-stress contribution has not been evaluated for the general case of pure 
strain, calculations having been restricted to axisymmetric strain and two-dimensional 
strain. For axisymmetric strain (El = 2, E, = E, = - I ) ,  both uniaxial and biaxial 
strain are taken into account by allowing y to be positive and negative for the respec- 
tive cases. There is only one independent stress component for this flow and the 
corresponding viscosity contribution is 

p” = ( 2 q 1  - xiz --Z&)/12y. 

The transform variables in the five-dimensional integral for ,ue obtained from (12) 
can be integrated out to give the two-dimensional integral 
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FIGURE 4. Logarithmic plot of the stress components in two-dimensional strain a8 a function of y. 
(i) X;,-X;,, (ii) C;,+C;,-2C;3. ----, y < 1 hmit; -.-.-, y $ 1 limit. 

where 

and 
XI = u-4Y - U2Y , x2 = u2y - 1, x3 = $(u-4' + u'-4y + 2u2Y + 2d2Y - 6), 

x4 = *(2--U27--Uf2Y), 

This is simpler to evaluate than the corresponding integral in the simple-shear case 
and can be computed to within 1% accuracy by using %point Gaussian quadrature 
for each integral. The results are plotted in figure 3. The dominant contribution for 
strong flows comes from the I(u, 1) integral, which has the same interpretation as in 
the simple-shear case, namely the interaction of the charge cloud with the field due 
to the point charge. The asymptotic value of pe can be evaluated exactly to give a 
strain-thinning viscosity 

pe = &(nI yI 1-4 as I yI + co 

for both uniaxial and biaxial flows. 
The second-order-fluid approximation from (15) and (16) for weak flows has only 

a limited range of validity, as the maximum value of pe is at ymax = 0.070. Far better 
agreement is obtained if the expansion of (14) is extended to the next order, when 

+ 0(Y3) ,  pe = - 1 +--- Y 27Y2 
24On 112On 4480n 
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and this approximation is included in figure 3. The coefficient of the O(y2) term is 
much larger than that of the O(y) term, and it predicts the maximum well, giving 
ymax = 0.074. 

For the case of two-dimensional strain (El  = - E, = 1 and E, = 0) ,  the integral 
representation of the charge density (20) can be written as 

The two independent stress contributions are Z;l - Z;, and the cross-stress 

which for a Newtonian fluid are respectively 4,u0 y and zero. These can be reduced to 
three-dimensional integrals which can be evaluated numerically and are shown in 
figure 4. The low strain forms, from (15) and (16), and the high strain forms, obtained 
numericallv. are 

In conclusion we compare the results for a thick charge cloud with the results of 
Russel (19786) for a thin charge cloud. Russel found for simple shear that the vis- 
cosity shear-thins, with a y-2 behaviour as y -+ a, whilst the normal-stress differences 
tend to constant values for large y. For pure strain he found a Newtonian behaviour 
until his expansion of the charge density broke down, when y N UK 9 1.  The results 
in this analysis show much less variation. In  all the linear flows considered, all the 
stress components have a y-* behaviour as y -+ a, the uniaxial extension strain 
viscosity first strain-thickening at small y. Thus we expect the particular flows 
considered for arbitrary y to be typical of other linear flows as far as the strong flow 
limit is concerned. Although there is no difference in the asymptotic behaviour of 
the bulk-stress contributions in the two cases considered, there is a difference in the 
far-field behaviour of the charge density. For simple shear we found an exponential 
decay, whereas for pure strain we found an algebraic decay. Since for general linear 
flows there will be an accelerating flow in the direction in which the charge cloud is 
stretched, we expect the algebraic decay to be more typical. 
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Council for their financial support. 
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